Acta Cryst. (1995). C51, 2370-2372

A Highly Substituted trans-Fused Bicyclo[5.3.0]decene

Sophie Kumanovic, Mark Lautens and Alan J. Lough
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1
(Received 22 February 1995; accepted 17 May 1995)

Abstract

The title compound, 2,4-dimethyl-9-oxabicyclo[5.3.0]-dec-5-ene-1,3-diol deuterochloroform solvate, $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$.$\mathrm{CDCl}_{3}$, has a seven-membered and a five-membered ring which are trans-fused and are affected by angle strain. There are three types of intermolecular hydrogen bonding present in the structure, namely, $\mathrm{O}-\mathrm{H} \cdots \mathrm{OH}$ $\left[\begin{array}{lllll}\mathrm{O} \cdots \mathrm{O} & 2.774(2) \AA \\ \AA\end{array}\right], \mathrm{O}-\mathrm{H} \cdots \mathrm{O} \quad[\mathrm{O} \cdots \mathrm{O} \quad 2.837(2) \AA]$ and C—D \cdots OH [C \cdots O 3.043 (2) A $]$.

Comment

Our objective was to design a strategy which would rapidly assemble the trans-fused bicyclo[5.3.0] ring system and be sufficiently flexible to incorporate substitution within the rings and/or at the periphery. The 5,7 -fused ring system is found in many natural products (Rigby, 1988). Our overall plan, outlined in the scheme below, relies on an intramolecular cyclization process in which $\mathrm{C}-\mathrm{C}$ bond formation is accompanied by the rupture of a $\mathrm{C}-\mathrm{O}$ bond.

$\mathrm{X}=\mathrm{CH}_{2}, \mathrm{O}, \mathrm{S}, \mathrm{N}-\mathrm{Me}$
The relative stereochemistry of the title bicyclo[5.3.0] molecule (4) was established by this X-ray structure determination and is consistent with an intramolecular anionic attack of the olefin in an exo- $S_{N} 2^{\prime}$ fashion (Lautens \& Kumanovic, 1995). The product contains five contiguous stereocentres and a new ring, as well as a tertiary bridgehead hydroxy moiety.

(4)

In the title molecule, the seven-membered ring has a half-chair conformation (Ladd \& Palmer, 1985). Atoms

C2, C3, C4 and C5 form a least-squares plane [maximum deviation from the plane of 0.009 (1) \AA for atom C4], with atoms C1, C7 and C6 displaced from it by $0.950(3), 0.523(4)$ and $-0.443(3) \AA$, respectively. The seven-membered ring is trans-fused [torsion angle $\mathrm{O} 14-\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2-177.3(12)^{\circ}$] to the fivemembered ring, which has an envelope conformation. Atoms C1, C8, O9 and C 10 form a plane [maximum deviation 0.094 (1) \AA for atom O9], with atom C 2 displaced from it by -0.585 (2) \AA.

The magnitudes of the internal angles of the sevenmembered ring in (4) are significantly distorted by strain. The sum of the internal angles of the sevenmembered ring is $838.2(1)^{\circ}$, which is significantly larger than the expected sum, 787.5°, based on orbital hybridization principles. The internal angles in the fivemembered ring, on the other hand, tend to be smaller than expected. The most significant value is $101.6(1)^{\circ}$ for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8$. This appears to compensate for the angular distortion present in the seven-membered ring.

There are three different types of hydrogen bonding present in the crystal structure. Firstly, molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{OH}$ hydrogen bonds via 21 screw axes to form infinite chains in the \mathbf{y} direction $\left[\mathrm{O} 12 \cdots \mathrm{O} 14\left(-x, \frac{1}{2}+y, \frac{1}{2}-z\right) 2.774(2) \AA\right]$. There are also $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between molecules, symmetry related by glide planes, which form chains in the z direction [014‥O9 $\left(x,-\frac{1}{2}-y\right.$, $\left.\left.\frac{1}{2}+z\right) 2.837(2) \AA\right]$. The asymmetric unit of the structure contains one CDCl_{3} molecule which is rotationally disordered about the $\mathrm{C}-\mathrm{D}$ bond axis giving two sites for each Cl atom. This solvent molecule is hydrogen bonded through C-D $\cdots \mathrm{OH}[\mathrm{C} 1 S \cdots \mathrm{O} 123.043$ (2) \AA] interactions to give the third type of hydrogen bonding. The overall structure consists of layers of hydrogen-

Fig. 1. View of the title molecule with the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as small spheres.
bonded molecules of (4) with disordered hydrogenbonded molecules of CDCl_{3} sandwiched between layers (Fig. 2). The disorder does not affect the hydrogen bonding.

Fig. 2. View perpendicular to the $b c$ plane showing a hydrogen-bonded layer. Atoms are drawn as open spheres and only the H atoms involved in hydrogen bonds (shown by dashed lines) have been included. Only one of the disorder sites has been shown for the Cl atoms.

Experimental

The oxabicyclo[3.2.1] substrate (3) employed in this study was prepared in three steps using [4+3] cycloaddition as the key step. The α-(tributylstannyl)methyl ether of furfuryl alcohol (1) was prepared by the methods of Still \& Mitra (1978), Still, McDonald, Collum \& Mitra (1979), Seyferth \& Andrews (1971) and Still (1978), using KH and $\mathrm{Bu}_{3} \mathrm{SnCH}_{2} \mathrm{I}$. Noyori's [4+3] cycloaddition (Sato \& Noyori, 1978) was employed for the synthesis of the oxabicyclo[3.2.1] substrate (2). The method involves the generation of an oxyallyl cation

(a) $[4+3]$ cycloaddition (b) L-Selectride ${ }^{\text {(1) }}$, THF, 195 K
(c) MeLi (5 eq .), THF, $195 \rightarrow 273 \mathrm{~K}, 2 \mathrm{~h}$
from α, α^{\prime}-dibromopentan-3-one (Ashcroft \& Hoffman, 1978; Clarke \& Heathcock, 1976) and $\mathrm{Zn} / \mathrm{Ag}$ couple (Clarke \& Heathcock, 1976), followed by cycloaddition to furan (1) to form (2). Following the cycloaddition (22% yield), ketone (2) was stereoselectively reduced with L-selectride (Chiu, 1994). Alcohol (3) was investigated in the cyclization reaction. The feasibility of the intramolecular ring opening of the oxabicyclo[3.2.1] compounds was explored using the stannyl ether (3). In a typical experiment, (3) was treated with 5 eq . of MeLi in tetrahydrofuran at 195 K for 5 min to generate the α-oxy organolithium species (Broka \& Shen, 1989; Broka, Lee \& Shen, 1988). Upon warming to 273 K and stirring for 2 h , the bicyclo[5.3.0] tetrahydrofuran (4) was produced in 85% yield. Crystals of (4) were obtained from CDCl_{3}.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3} . \mathrm{CDCl}_{3}$
$M_{r}=318.63$
Monoclinic
$P 2_{1} / c$
$a=10.125$ (1) \AA
$b=12.764$ (2) \AA
$c=11.338$ (2) \AA
$\beta=90.39(1)^{\circ}$
$V=1465.2(4) \AA^{3}$
$Z=4$
$D_{x}=1.444 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 42 reflections

$$
\begin{aligned}
\theta & =5.22-12.01^{\circ} \\
\mu & =0.623 \mathrm{~mm}^{-1} \\
T & =158(2) \mathrm{K}
\end{aligned}
$$

Fragment cut from flat block
$0.35 \times 0.30 \times 0.25 \mathrm{~mm}$ Colourless

Data collection

Siemens P4 diffractometer

ω scans

Absorption correction:
refined from ΔF using
SHELXA90 in SHELXL93
(Sheldrick, 1993)
$T_{\text {min }}=0.578, T_{\text {max }}=$ 0.955

5320 measured reflections
4265 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.0431$
$w R\left(F^{2}\right)=0.1183$
$S=1.019$
4263 reflections
268 parameters
All H-atom parameters

$$
\begin{aligned}
& \text { refined } \\
& \begin{aligned}
&== 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0593 P)^{2}\right. \\
&+0.3809 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.066 \\
& \Delta \rho_{\max }=0.526 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.271 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
C1	0.04551 (14)	-0.15398 (11)	0.17615 (12)	0.0175 (3)
C2	0.18329 (14)	-0.12541 (11)	0.13056 (12)	0.0189 (3)
C3	0.2927 (2)	-0.12591 (12)	0.22047 (13)	0.0222 (3)

C 4	$0.28810(15)$	$-0.08968(12)$	$0.33002(13)$	$0.0223(3)$
C 5	$0.1769(2)$	$-0.03551(12)$	$0.39276(12)$	$0.0226(3)$
C 6	$0.06617(15)$	$0.00934(11)$	$0.31501(12)$	$0.0196(3)$
C 7	$-0.02465(14)$	$-0.07047(12)$	$0.25265(13)$	$0.0198(3)$
C 8	$0.2040(2)$	$-0.20865(13)$	$0.03576(14)$	$0.0263(3)$
O 9	$0.07558(12)$	$-0.23217(10)$	$-0.01145(10)$	$0.0290(3)$
C 10	$-0.0231(2)$	$-0.18267(13)$	$0.06005(13)$	$0.0236(3)$
C 11	$0.2361(2)$	$0.05157(15)$	$0.46984(15)$	$0.0314(4)$
O 12	$0.12095(11)$	$0.08252(8)$	$0.23336(10)$	$0.0215(2)$
C 13	$-0.1339(2)$	$-0.00990(14)$	$0.1889(2)$	$0.0292(3)$
O 14	$0.05349(12)$	$-0.25180(8)$	$0.23963(10)$	$0.0223(2)$
C 15	$0.3996(2)$	$0.1480(2)$	$0.1667(2)$	$0.0335(4)$
$\mathrm{Cl1} \dagger$	$0.4220(6)$	$0.1114(12)$	$0.0217(5)$	$0.079(2)$
$\mathrm{C} 12 \dagger$	$0.5430(9)$	$0.1095(8)$	$0.2509(10)$	$0.0521(13)$
$\mathrm{Cl3} \dagger$	$0.3618(5)$	$0.2738(4)$	$0.1917(10)$	$0.0654(12)$
$\mathrm{Cl1}$				
$\mathrm{Cl} 2^{\prime} \ddagger$	$0.4096(3)$	$0.1599(6)$	$0.0084(2)$	$0.0563(10)$
$\mathrm{Cl} 3^{\prime} \ddagger$	$0.5473(8)$	$0.1078(7)$	$0.2249(5)$	$0.0418(6)$
$\mathrm{C} 3^{\prime} \ddagger$	$0.3601(4)$	$0.2787(3)$	$0.2151(3)$	$0.0418(6)$
		\dagger Occupancy $=0.47(2)$.		
		\ddagger Occupancy $=0.53(2)$.		

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

The CDCl_{3} molecule is rotationally disordered about the C D bond axis by about $12^{\circ} . \mathrm{Cl}$ atoms are disordered over two sites with relative $\mathrm{Cl} / \mathrm{Cl}^{\prime}$ occupancies of $0.47 / 0.53$. The refined C-H distances range between 0.90 (2) and 1.01 (2) \AA.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: $X S$ in SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: $X P$ in $S H E L X T L / P C$. Software used to prepare material for publication: SHELXL93.

This research was supported by NSERC Canada, the A. P. Sloan Foundation, the E. W. R. Steacie Memorial Fund, Bio-Mega/Boehringer Ingelheim Inc., the Eli Lilly Grantee Program, the Petroleum Research Fund administered by the American Chemical Society, and the University of Toronto.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1194). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Ashcroft, M. R. \& Hoffman, H. M. R. (1978). Org. Synth. 58, 17-24. Broka, C. A., Lee, W. J. \& Shen, T. (1988). J. Org. Chem. 53, 13361388.

Broka, C. A. \& Shen, T. (1989). J. Am. Chem. Soc. 111, 2981-2984.
Chiu, P. (1994). PhD thesis. Ring-Opening Reactions of Oxabicyclic Compounds: Unsymmetrical Substrates and Reduction, p. 76. Univ. of Toronto, Canada.
Clarke, R. D. \& Heathcock, C. H. (1976). J. Org. Chem. 41, 636-643.
Ladd, M. F. C. \& Palmer, R. A. (1985). Structure Determination by X-ray Crystallography, 2nd ed., pp. 352-354. New York: Plenum Press.
Lautens, M. \& Kumanovic, S. (1995). J. Am. Chem. Soc. 117, 19541964.

Rigby, J. H. (1988). Studies in Natural Products Chemistry, Vol. 1, edited by Atta-ur-Rahman, pp. 545-576. Amsterdam: Elsevier.
Sato, T. \& Noyori, R. (1978). Bull. Chem. Soc. Jpn, 51, 2745-2746.
Seyferth, D. \& Andrews, S. B. (1971). J. Organomet. Chem. 30, 151166.

Sheldrick, G. M. (I990). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Still, W. C. (1978). J. Am. Chem. Soc. 100, 1481-1486.
Still, W. C., McDonald, J. H., Collum, D. B. \& Mitra, A. (1979). Tetrahedron Lett. pp. 593-594.
Still, W. C. \& Mitra, A. (1978). J. Am. Chem. Soc. 100, 1927-1928.

Acta Cryst. (1995). C51, 2372-2374

N-(\boldsymbol{p}-Tolyl)phthalimide

Gabriele Bocelli and Andrea Cantoni

Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, I-43100 Parma, Italy

Pietro Cozzini

Dipartimento di Chimica Generale e Inorganica, Chimica Analitica e Chimica Fisica, Università di Parma, Viale delle Scienze, I-43100 Parma, Italy
(Received 12 April 1995; accepted 30 May 1995)

Abstract

The title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2}$, was structurally analyzed in order to clarify the influence of the substituents on the conformational change, which has an

